RESEARCH TOPICS ON POWER SYSTEMS

Dr. Samundra Gurung, PhD Assistant Professor

Department of Electrical and Electronics Engineering Kathmandu University

https://www.pbs.org/video/america-revealed-birth-power-grid/

https://www.power-grid.com/executive-insight/power-gen-europe-confidence-index-european-power-report/#gref

TOPICS THAT WILL BE COVERED

✓ Advancements in Generation System

✓ Advancements in Transmission system

✓Advancements in Distribution system

✓ Machine learning for power systems (Time permits!)

ADVANCEMENTS IN GENERATION SYSTEM

Modeling and Validation of Hydropower Plants

• Physics driven (Based on differential equation)

Article

Frequency Containment Control of Hydropower Plants Using Different Adaptive Methods

- TUBITAK MRC Energy Institute, METU Campus, Ankara 06531, Jurkey
- Department of Mochanical Engineering, TED University, Ankara 06420, Turkey; yight tescooglu@tedn.edu.tr
- TOBB University of Economics and Technology, ETU Hydro, Ankara 06560, Turkey,
- kutav.elebioglu@gmail.com
- Correspondence: dogan.gezer@iubitak.gov.tr, Tel.: +90-312-210-1830

Figure 1, General Jaynus of a hydropower plant (HPP)

2.1 Sustem Description

In this study, Seyhan I HPP was modeled with the characteristic parameters listed in Table 1. Seyhan I HPP is an aged hydropower plant that started operation in 1997. It has linee vertical Francis burbines with 22.5 MVA of installed capacity each.

Parameter	Value	Linit
Norminal met besai	2	in,
Nominal flow rate	77	m ⁹ (a
Surge land, skinuge capacity	(24.8)	8
Surge tank emoviesectional area	986	m ²
Prinsteet Isusali	41 -	171
Prinslade mess-sectional area	21.2	m
Penningel method factory	0.05	
Caude yang opening at no-basi	11	
Caude vane opening ar full hard	65	
Serveryon of the contrart	4.	
Guide value delay tune	× .	1.1
Flywheel offeet of the percenter	3320	Toritant.
Unders normanal speed	125	anni.
Approval power of the generation	17. F	2406
Inertia constant of the generator	3.14	ŝ

Table 1. Characteristic parameters of Section 1 (IPT)

• Software: Open-Modelica, Simulink..

• Can be further extended to data-driven models

Condition Monitoring for Hydropower plants

• Sensors, Signal Processing, Internet of Things (IOT), AI..

1. Second production is the maximum of the second second of the second secon

The Norman de France Trans

CMFD: Condition Monitoring and Fault Diagnostics

Table 1 Gausalines of faulty and indicators for thrust bearing.

Causality ID	Pault description	Feature					
		Dutput power	Roration trequency	Bearing babbott temperature	Oil tevel	Od temperature	R.M.S. velocity
9	Overheating of bearing	XL		X2	1.1		
10	Bearing Indirication oil consumption		XT		503		
32	insufficient heat transfer from the bearing cooling system	-81				32	
12	Bearing performance degradation	-X1				M	X2
30	Excessive bearing babbits temperature			NE L			
31	Bearing lubrication oil consumption				KI.		
32	Overhearing of bearing.					01	
35	Bearing performance degradation						81

Alagöz, İzzet, Mehmet Bulut, Veysel Geylani, and Arif Yıldırım. "Importance of real-time hydro power plant condition monitoring systems and contribution to electricity production." *Turk. J. Electr. Power Energy Syst* 1, no. 1 (2021): 1-11.

SOLAR PHOTOVOLTAIC GENERATION IN NEPAL

Fig. Solar PV potential in Nepal

Fig. PV schematic diagram

Controller Interaction

• Parallel operation of **30 inverters** a 500 kW solar plant connected to a 44kV feeder via 600V/44kV

0

Fig. Current and voltage waveforms under normal and unstable operations

OTHER REQUIREMENTS OF SOLAR INVERTER

- Active power curtailment
- Reactive power support
- Inertia support
- Low Harmonic content....

Ancillary services

Solar converter must be able to be able to fulfill all the requirements specified by the country grid code

Retrofit controllers for Active Power Curtailment

Retrofit controllers

Problem of Inertia

VIRTUAL SYNCHRONOUS MACHINE (VSM)

 Allows renewable converters to behave like conventional generators-> (Synthetic inertia)

Fig. Virtual synchronous machine

Fig. System Frequency 23

Problem Assessment Project Mid Term Progress FREQUENCY STABILITY ASSESSMENT OF POWER SYSTEM NETWORK OF BAGMATI AND GANDAKI PROVINCE

Presenter: Amrit Parajuli Graduate Student M.E., Electrical Power Engineering Supervisors: Asst. Prof. Dr. Samundra Gurung Lecturer Anil Lamichhane

Frequency Regulation standards in Nepal

- Regulations set by Nepal Electricity Authority (NEA).
- □ The fundamental frequency of the system should be maintained between 48.75 Hz and 51.25 Hz i.e., +/- 2.5% of 50 Hz.
- The grid operating states is classified into 3 operating states from the perspective of frequency regulation as:
 - Normal State: The System Frequency is within the limits of 49.5 Hz and 50.5 Hz.
 - Alert State: The System Frequency is outside the limits of 49.5 and 50.5 Hz but within the limits of 48.75 Hz and 51.25 Hz.
 - Emergency State: The System Frequency is outside the limits of 48.75 Hz and 51.25 Hz.

Prequency Statillity Assessment of Power System activors of Bandati and Gandati Province Ameri Parajuli

Fig 7: System Frequency Response with IEEEG3 Governor

Fig 7: Centre of Inertia frequency (f_{COI}) of the system

Table 2: Frequency nadir and RoCoF of generating buses

Bus Name	f _{nadir} (Hz)	RoCoF (Hz/s)
Kaligandaki – A	48.79227	0.2013
Likhu - A	48.78238	0.2255
Lower Modi	48.79182	0.2014
Middle Marshyangdi	48.79146	0.2011
Marshyangdi	48.79254	0.2009
Chilime	48.79344	0.2493
Devighat	48.79556	0.2014
Bhotekoshi	48.79212	0.2241
Khimti	48.78258	0.2254
Likhu – IV	48.78167	0.2256
Upper Tamakoshi	48.78077	0.2258
Gandak	48.79213	0.2013
Kulekhani – I	48.79518	0.2018
Kulekhani – II	48.79487	0.2015
Sunkoshi	48.79603	0.2020
Indrawati	48.79618	0.2020
Trishuli	48.79482	0.2009
Modi	48.79185	0.2010

Table 3 : Frequency stability indices for selected system

Frequency Stability Indices	Measured point	Value
System lowest Nadir	Upper Tamakoshi	48.7077 Hz
System highest RoCoF	Chilime	0.2493 Hz/s
System frequency Nadir	COI	48.7976 Hz
System RoCoF	COI	0.2038 Hz/s

Research Opportunities

- Retrofit of Grid Connected Solar Farm Controller for frequency response support (Curtailment)
- Impact of VSM in Frequency Response "Inertial response Frame"
- Optimal loadshedding strategy
- Energy storage as an ancillary service (Pricing)

TRANSMISSION TECHNOLOGIES

WIDE AREA MONITORING SYSTEM

- PMUs can measure from 20 to 150 samples per second
- Typically it measures the voltage and angle of the bus where it is connected

Fig. PMUs in North-American grid

- Currently, NEA is also planning to install PMU at EHV substations
- PMU data can be used for many purpose including faster

estimation/ prevention of stability issues (STVS)

3703

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 23, WO. 4 WOVEMBER 2013

Real-Time Monitoring of Short-Term Voltage Stability Using PMU Data

Sambarta Dasgupta. Magesh Paramasiyam. Umesh Vaidya. Member: IEEE, and Venkataramana Ajjarapu, Fellow IEEE

TABLE II CRITICAL CLEARING THILE COMPUTED FOR IEEE 162-BUS SYSTEM

Fault	Fault	Trip	CCT
Ente	Location	Line	(In sec)
V.	E.	1 - 2	0.126
- 0	ā.	5 I	0.151
	26	26 - 25	6.104
1.	120	120 - 5	0.175
1	1220.	120 - 112	0.140
	1293	129 - 5	0.207

(a) 1 Mayanana wana a seach ta subsect and reasons on proc. 4 14, 100 and 1000 was full by markets gas day to be a sub-transf in Time II.

Fig. 2. Evolution of bus voltages (for buses 162 - 174) for clearing time $t_{eff} = 1.080$ % for IEEE 162-bus system.
IEEE 9 bus system results

Fig. 11 GUI for TSA (Scenario 2)

Safavizadeh, Arash, Meysam Kordi, Fariborz Eghtedarnia, Roozbeh Torkzadeh, and Hesamoddin Marzooghi. "Framework for real-time short-term stability assessment of power systems using PMU measurements." *IET Generation, Transmission & Distribution* 13, no. 15 (2019): 3433-3442.

IEEE 9 bus system results

NOC		ar a Alasimit
14 WAY'S FLOW	Short-Term Voltage Stability Assessment	Jan 07 2019 15:01:25.827
R (62	Id/ Voltage Magnitude Raul-Time Station	View All
		Settings Assyntacis of Ban Antrage Magnitude of Ban Interpretation of Ban
	18	MMM
	In Lawrence Concerned in Annual Program (in a Tree Down	
		k.
	addition and second and second second local, and	Pociscial and and source and the non-

Fig. 12 GUI for SVSA (Scenario 2)

Safavizadeh, Arash, Meysam Kordi, Fariborz Eghtedarnia, Roozbeh Torkzadeh, and Hesamoddin Marzooghi. "Framework for real-time short-term stability assessment of power systems using PMU measurements." *IET Generation, Transmission & Distribution* 13, no. 15 (2019): 3433-3442.

- Challenges remaining
- Develop a tool for real-time monitoring and early warning system based on PMU measurements
- 2. How to make system more observable with limited number of PMUs?
- 3. Effect of PMU noise and communication latency in estimation

4.

DYNAMIC LINE RATING ESTIMATION

- Over head lines normally are limited by **thermal limit (Heat)**
- They are usually sized based on worst criterion (65 degree celsius, low wind velocity and full radiation)

 ✓ However, conductor can carry more current when the solar radiation is low and wind velocity is high (Cooling effect)

1993	Corront Gallyong Canadity		
Ward	REDUCE	75 200 02	9P Dev. C
Alterna	0.05	Art c	open,
Seacr	187	$\mathfrak{D}^{(i)}$	1/18
 Tered." 		一版	- 20
Alter.	107	37.	270
+ Ba	(h.,	24	- 96
Bernel	1150	205	20
QIIE	307	757	76
C.	20	j, i	
leagel	315	37/2	ME
- Suyole	2/6	30	- 420
- Tiger	9 <u>1</u>	53	
1/you	- 342 - 1	A775	NC .
000	11c	374	GAL
	.010		
12 mg	alle -	724	10
57080	320	306	122
D.C.	12	396	010
- 3k	787	ണ	
Ganget	707	- 970	1015
Samor	- 1 1 20 -	(46)	174
Ein	117	144	100
ជ័យសេជ	300	14.4	
- lot	1	110	

Technology developed by the Slovenia grid

Figure 15. The principle of the dynamic rating system for 380-KV OHLs.

Static rating over one month for TenneT OHLs.

ADVANCEMENTS IN DISTRIBUTION SYSTEMS

ligure 7. Smart grid return on investments.

• Transmission Grid Visualization

https://www.rechargenews.com/transition/the-final-piece-ofthe-puzzle-how-will-the-future-grid-work-/2-1-515137?zephr_sso_ott=cKZMLw • Distribution Grid Visualization

Smart meter

https://techlekh.com/nea-smart-electricity-meters/

Micro phasor measurement unit

https://powerside.com/products/power-monitoring/micropmu/

Fig 13: Circuit Setup of SEM

• Distribution Grid Visualization

Finite 7. Sample set of GreenGrid and neomaphic layout visualizations annield used in usability evaluation. Graphs show simulated electric nower

https://www.semanticscholar.org/paper/A-Novel-Visualization-Technique-for-Electric-Power-Wong-Schneider/36c2e19e3d9fd4b10e3fe9d9b0422c979f0bafae

• Distribution Automation -> Outage Management System

 Distribution Automation (Ongoing Project) -> Outage Management System

- Distribution/ Feeder Automation (In lab)
- More complex algorithm/ AI (maybe) required in complex system (Mesh, loop etc)

Lab model

Figure 11: Distribution system model for Lab implementation

Table 2: Equivalent distribution components for DA lab implementation

Components	Equivalent
Supply (11kV)	12V (AC)
Feeder	Resistor and inductor
Sectionalizer	Contactor
Load	Resistive bank

Figure 42: Monitoring the system status from Web app.

Figure 43: Overall hardware

Undergraduate project work of Yubraj, Aship and Abhijeet, KU

PROBABILISTIC METHODS

- Provide statistical information about system→ Better tool for decision making
- Better method to analyze the effect o (renewable, load etc)

- Task: Find voltage profile for load for every hour
- **Solution:** Take hourly load data of every hour and run the loadflow (Newton Raphson)

≻Tedious work

FLUCTUATIONS TO PROBABILITY

PROBABILISTIC LOADFLOW

 Uses Monte Carlo Simulation or some analytical methods such as cumulant, point estimate etc

PVG supplies 20% of the load demand

INPUTS

	MC9	
ARMIS	TU-	
din CL p	1.088	
907 PL 00	1.15060	
(0VPT=1.1:00) -	13.25	
Time :	514730	

TABLE II

COMPARISON OF THE REAL TO FOR THE VOIDARE MARGOTICHE AT BUS 544171

CL. - confidence levels (INF – stead, state metholitage synhability, G/ Gram-Charlier, 6W – Eligenvoriti, CF – Comiste-Fisher.

Fig. 7. CDF circles of the voltage magnitude at bus 84417 in three different types of expansions.

Fig. 3 (DF curves of the line from unough line 14556-17015 in three different specific expansions

TABLE IC CEARANNEET OF THE DESCRIPTION OF THE LASS FIGHT THEORY AND LASS 1495/4017197

	0.459
40415	- In
-limorit - p	20073
309% C. C. 1 1911-	1.3811771
P0.#1-1.2 pm	102/ -
OI 8 - pyeridant pr	n Houthall In a

Other applications

Probabilistic optimization

- Task: Put a capacitor bank of appropriate size to keep the voltage near desired voltage (1 pu)
- System has a lot of photovoltaic generation

Solution:

• Minimize
$$\sum_{i=1}^{N_{bus}} P(V_i < 0.95)$$

• Constraints:
$$Q_{min} \leq Q_{capacitor} \leq Q_{max}$$

This problem can be solved by different optimization algorithms such as particle-swarm optimization, genetic algorithm etc.

• Volt-Var Control (Distribution Automation)

Review article

State-of-the-art technologies for volt-var control to support the penetration of renewable energy into the smart distribution grids

Khalil Gholami⁺, Md. Rabiul Islam⁺, Md. Moktadir Rahman⁺⁺, Ali Azizivahed⁺, Afef Fekih⁺⁺

*Department of Electrical Engineering, Kermanshan Branen, Islamic Azau University, Kermanshim, Iron

" School of Electrical, Computer and Telecommunications Engineering: University of Wollongang, New South Wates 2522 Australia

- Beneweible Every Unit, Ingeleum Australia Pty 11d, New South Wales 2500, Australia
- "Focalist of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia

"Department of Electrical and Computer Engineering, University of Louisiana at Lalayette, Lafavetre, LA 70503-3890, HSA

Fig. 3. Capacitor bank in a distribution network for reactive power compensation:

OTHER RESEARCH AREAS

✓ Machine learning in power systems
✓ Home Energy Management Systems
✓ Electric Vehicles (Vehicle 2 Grid)...

Thank you for your attention

- AEPC solar photovoltaic report
- Murdock, H.E., Gibb, D., André, T., Appavou, F., Brown, A., Epp, B., Kondev, B., McCrone, A., Musolino, E., Ranalder, L. and Sawin, J.L., 2019. Renewables 2019 global status report
- Delle Femine, A., Gallo, D., Landi, C. and Luiso, M., 2019. The Design of a Low Cost Phasor Measurement Unit. *Energies*, 12(14), p.2648.
- Aghamohammadi, M.R. and Tabandeh, S.M., 2016. A new approach for online coherency identification in power systems based on correlation characteristics of generators rotor oscillations. *International Journal of Electrical Power & Energy Systems*, 83, pp.470-484.
- Kundur, P., Balu, N.J. and Lauby, M.G., 1994. Power system stability and control (Vol. 7). New York: McGraw-hill.
- NEA annual report
- Kumar, P.S., Chandrasena, R.P.S., Ramu, V., Srinivas, G.N. and Babu, K.V.S.M., 2020. Energy management system for small scale hybrid wind solar battery based microgrid. *IEEE Access*, *8*, pp.8336-8345.
- Zhong, Q.C., 2016. Virtual Synchronous Machines: A unified interface for grid integration. *IEEE Power Electronics Magazine*, 3(4), pp.18-27.
- Obi, M. and Bass, R., 2016. Trends and challenges of grid-connected photovoltaic systems—A review. *Renewable and Sustainable Energy Reviews*, *58*, pp.1082-1094.

- <u>http://pe-ip.com/internet-of-things-iot-interface-for-electrical-equipment-manufacturers/</u>
- Zhou, B., Li, W., Chan, K.W., Cao, Y., Kuang, Y., Liu, X. and Wang, X., 2016. Smart home energy management systems: Concept, configurations, and scheduling strategies. *Renewable and Sustainable Energy Reviews*, *61*, pp.30-40.
- Hui, S.Y., Lee, C.K. and Wu, F.F., 2012. Electric springs—A new smart grid technology. *IEEE Transactions on Smart Grid*, 3(3), pp.1552-1561.
- Pokharel, S. and Dimitrovski, A., 2020. Analytical Modeling of a Gapless Ferromagnetic Core Reactor. *IEEE Transactions on Magnetics*, *56*(2), pp.1-10.
- Hossain, M.J., Mahmud, M.A., Pota, H.R. and Mithulananthan, N., 2014. Design of non-interacting controllers for PV systems in distribution networks. *IEEE Transactions on Power Systems*, 29(6), pp.2763-2774.
- https://www.otlm.eu/

- Cabrera-Tobar, A., Bullich-Massagué, E., Aragüés-Peñalba, M. and Gomis-Bellmunt, O., 2016. Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system. *Renewable and Sustainable Energy Reviews*, 62, pp.971-987.
- Zeb, K., Uddin, W., Khan, M.A., Ali, Z., Ali, M.U., Christofides, N. and Kim, H.J., 2018. A comprehensive review on inverter topologies and control strategies for grid connected photovoltaic system. *Renewable and Sustainable Energy Reviews*, *94*, pp.1120-1141.
- Shah, R., Mithulananthan, N., Bansal, R.C. and Ramachandaramurthy, V.K., 2015. A review of key power system stability challenges for large-scale PV integration. *Renewable and Sustainable Energy Reviews*, *41*, pp.1423-1436.
- Shivashankar, S., Mekhilef, S., Mokhlis, H. and Karimi, M., 2016. Mitigating methods of power fluctuation of photovoltaic (PV) sources–A review. *Renewable and Sustainable Energy Reviews*, *59*, pp.1170-1184.
- Dreidy, M., Mokhlis, H. and Mekhilef, S., 2017. Inertia response and frequency control techniques for renewable energy sources: A review. *Renewable and sustainable energy reviews*, 69, pp.144-155.
- Sridhar, V. and Umashankar, S., 2017. A comprehensive review on CHB MLI based PV inverter and feasibility study of CHB MLI based PV-STATCOM. *Renewable and Sustainable Energy Reviews, 78,* pp.138-156.
- Blaabjerg, F., Iov, F., Kerekes, T., Teodorescu, R. and Ma, K., 2011, February. Power electronics-key technology for renewable energy systems. In 2011 2nd Power Electronics, Drive Systems and Technologies Conference (pp. 445-466). IEEE.
- Li, C., 2017. Unstable operation of photovoltaic inverter from field experiences. *IEEE Transactions on Power Delivery*, 33(2), pp.1013-1015.
- Wu, Y.K., Lin, J.H. and Lin, H.J., 2017. Standards and guidelines for grid-connected photovoltaic generation systems: A review and comparison. *IEEE Transactions on Industry Applications*, 53(4), pp.3205-3216.
- Lara-Jimenez, J.D., Ramirez, J.M. and Mancilla-David, F., 2017. Allocation of PMUs for power system-wide inertial frequency response estimation. *IET Generation, Transmission & Distribution, 11*(11), pp.2902-2911.
- Fan, M., Vittal, V., Heydt, G.T. and Ayyanar, R., 2012. Probabilistic power flow studies for transmission systems with photovoltaic generation using cumulants. *IEEE Transactions on Power Systems*, 27(4), pp.2251-2261.

- Winter, W., Elkington, K., Bareux, G. and Kostevc, J., 2014. Pushing the limits: Europe's new grid: Innovative tools to combat transmission bottlenecks and reduced inertia. *IEEE Power and Energy Magazine*, *13*(1), pp.60-74.
- Von Appen, J., Braun, M., Stetz, T., Diwold, K. and Geibel, D., 2013. Time in the sun: the challenge of high PV penetration in the German electric grid. *IEEE Power and Energy magazine*, *11*(2), pp.55-64.
- Overholt, P., Ortiz, D. and Silverstein, A., 2015. Synchrophasor technology and the doe: Exciting opportunities lie ahead in development and deployment. *IEEE Power and Energy Magazine*, *13*(5), pp.14-17.
- <u>https://en.wikipedia.org/wiki/Smart_grid</u>
- <u>http://www.sbwire.com/press-releases/outage-management-system-market-forecast-to-2023-examined-in-new-market-research-report-just-published-964170.htm</u>
- Bahmanyar, A., S. Jamali, A. Estebsari, and E. Bompard. "A comparison framework for distribution system outage and fault location methods." *Electric Power Systems Research* 145 (2017): 19-34.
- Farhangi, Hassan. "The path of the smart grid." IEEE power and energy magazine 8, no. 1 (2009): 18-28.
- <u>https://www.researchgate.net/publication/342550973_A_Novel_Approach_to_Fault_Diagnosis_of_High_Voltage_Trans</u> mission_line_-A_Self_Attentive_Convolutional_Neural_Network_Model/figures?lo=1
- https://pcmp.springeropen.com/articles/10.1186/s41601-018-0110-4

MACHINE LEARNING FOR POWER SYSTEMS

- Artificial Intelligence is a bigger concept i machines that can simulate human thinkin behavior
- ✓ Machine learning is an application or subs allows machines to learn from data withou explicitly

Machine learning algorithm Supervised and Unsupervi

Engineering of making intelligent Machines and Provenus

INTELLIGENCE

MACHINE LEARNING

Ability to learn without being explicitly programment

DEEP LEARNING

Learning based on Deep Neural Network

Regression

Х	Y
1000	200
2500	300

<u>Regression Problem</u> Predict real-valued output

- Takes large computational time for large system
- Security assessment is done every 5 to 15 minutes

Classification: Supervised learning

Classification: Line fault classification

Lab model

Figure 11: Distribution system model for Lab implementation

Table 2: Equivalent distribution components for DA lab implementation

Components	Equivalent
Supply (11kV)	12V (AC)
Feeder	Resistor and inductor
Sectionalizer	Contactor
Load	Resistive bank

Figure 42: Monitoring the system status from Web app.

Figure 43: Overall hardware

Undergraduate project work of Yubraj, Aship and Abhijeet, KU